
IJRREST: International Journal of Research Review in Engineering Science and Technology (ISSN 2278- 6643) | Volume-1 Issue-2, September 2012

67 | P a g e

Mobile Proactive Secret Sharing in Cloud Computing

*Vaibhav Kumar, **R. P. Ojha

*M. Tech. Scholar, Mewar University, Chittorgarh, Rajasthan

**Associate Professor, GCET, Gr. Noida, India

__

ABSTRACT

This research paper introduces a scheme to secure

any secret value in cloud network by Mobile

Proactive Secret Sharing (MPSS). This is an

extension of proactive secret sharing, where

contributing parties of a network hold the shares

of a secret value. Mobile proactive secret sharing

is much more flexible than proactive secret

sharing in terms of group membership: instead of

the group of shareholders being exactly the same

from one instance to the next, we allow the group

to change arbitrarily. In addition, we allow for an

increase or decrease of the threshold at each

instance.

Key Words: Cloud Computing, Proactive secret

sharing, cryptography, epoch, Byzantine faults.

1. INTRODUCTION

Secret sharing allows a collection of parties to

possess shares of a secret value (such as a secret key),

such that any t + 1 shares can be used to reconstruct

the secret, yet any t shares provide no information

about the secret. Sharing of cryptographic keys is

crucial in cloud network intended to withstand

Byzantine faults, that is, failures that cause servers to

behave arbitrarily badly, perhaps because they have

been compromised. This is in contrast to systems that

tolerate only fail-stop failures, in which servers stop

responding altogether. In the context of Byzantine

faults, secret sharing allows systems to perform

cryptographic operations securely, preserving the

secrecy of the keys despite up to t malicious servers.

In long-lived systems, however, servers can be

compromised over time, giving an adversary the

opportunity to collect more than t shares and recover

the secret. Additionally, systems may fail to function

properly, for instance due to hardware failure or an

attack. To prevent the number of failures from

exceeding the threshold the system is designed to

tolerate, servers must be repaired or replaced over

time, perhaps with newly-installed servers.

Moreover, this replacement must be performed

periodically even in the absence of detected faults

due to the potential for lie-in-wait attacks. In this type

of attack, faulty servers appear to behave correctly

while an attacker compromises additional machines;

once t+1 servers have been compromised, they start

behaving badly or simply reveal the secret to the

attacker.

Proactive secret sharing (PSS) schemes, address the

problem that shares can be exposed or lost over time

due to Byzantine faults. In PSS, servers execute a

share regeneration protocol, in which a new set of

shares of the same secret is generated and the old

shares discarded, rendering useless any collection of t

or fewer shares the adversary may have learned.

Furthermore, PSS schemes typically provide a share

recovery protocol so that a full set of new shares can

be generated even if some of the old shares (up to

some maximum number of faults tolerated) have

been lost.

As we know that there are many security related

issues are in cloud computing, this security scheme

can be applied in cloud computing to secure secret

values or data.

2. SECRET SHARING

Secret sharing was first proposed by Shamir and

independently by Blakley. These seminal schemes

operate under a very simple model: a trusted dealer

has a secret and distributes a different share of that

secret to each server. Shamir demonstrates that a

passive adversary who learns up to t shares of the

secret gains no partial information about the secret,

yet any t + 1 servers can combine their shares to

recover the secret. Blakley's scheme makes a similar

guarantee, except that it does not provide perfect

secrecy; combinations of t or fewer shares reveal

partial information about the secret, and additional

modifications are needed to ensure perfect secrecy.

Shamir's scheme is based on interpolation of

polynomials over a finite field, whereas Blakley's

scheme encodes the secret as an intersection of n-

dimensional hyper planes. Each share in Shamir's

scheme is the same size as the original secret, but

IJRREST: International Journal of Research Review in Engineering Science and Technology (ISSN 2278- 6643) | Volume-1 Issue-2, September 2012

68 | P a g e

shares in Blakley's scheme are t times as large.

Shamir's scheme is more widely used because it

provides stronger guarantees and better space

efficiency using only relatively simple mathematics.

The PSS scheme of Zhou et al. is based on a different

secret sharing mechanism that is even simpler but

more limited than both Shamir's and Blakley's

schemes.

3. VERIFIABLE SECRET SHARING

Feldman [Fel87] and Pedersen [Ped91a] introduced

verifiable secret sharing schemes based on Shamir's

work. These schemes allow shareholders to

determine whether the dealer sent them valid shares

of the secret, hence allowing them to come to a

consensus regarding whether the secret was shared

successfully. In this context, the dealer is semi-

trusted; it does not reveal the secret, but it might

attempt to fool servers into accepting an invalid

sharing of the secret. Verifiable secret sharing is an

important component in many distributed secret

sharing protocols involving untrusted participants

because the protocols typically involve each server

acting as a semi-trusted dealer to all of the others.

Feldman's and Pedersen's schemes have similar

efficiency but slightly different security guarantees.

Feldman's scheme is perfectly binding (meaning that

an untrusted dealer cannot fool shareholders into

accepting an invalid sharing) and computation- ally

binding (meaning that secrecy is subject to

computational hardness assumptions and the amount

of computation available to the shareholders).

Pedersen's scheme, on the other hand, is

computationally binding and perfectly hiding. It has

been shown that schemes that are both perfectly

hiding and perfectly binding do not exist. In the

context of the proactive secret sharing schemes we

discuss, a computationally unbounded attacker can

exploit the VSS to expose the secret regardless of

which choice we make, so the distinction is a non-

issue for us.

4. PROACTICE SECRET SHARING

4.1 Ostrovsky and Yung

Proactive secret sharing was introduced by

Ostrovsky and Yung in [OY91] as a way to cope

with network worms or viruses. In their model, an

adversary infects shareholders at a constant rate, but

shareholders are also rebooted and restored to their

correct state at an equal rate. Hence, they assume

that in any given time period (we use the term epoch

herein), t <n/2 shareholders may be faulty. (Note

that this threshold is better than the t <n/3 typically

required for asynchronous schemes, and is possible

only because the correctness of their protocol is

based on the unrealistic synchrony assumption that

servers that fail to respond within some fixed amount

of time are faulty.) Shareholders preserve the privacy

of the shared secret by executing a refresh protocol

to generate a new sharing of the secret, discarding

their old shares, and using the new shares for the next

epoch. In [OY91], the refresh protocol is

implemented via a generic secure multi-party

computation protocol on the existing shares. These

multi-party protocols (e.g., [BGW88, CCD88,

RBO89]) are general but inefficient. Some are

implemented in terms of many instances of

verifiable secret sharing, with the number of rounds

proportional to the depth of a circuit that implements

the function to be computed.

This seminal work is important because it was the

first to demonstrate that proactive secret sharing is

theoretically possible; however, the Ostrovsky and

Yung scheme is infeasible in practice because

performing nontrivial calculations using generic se-

cure multi-party protocols is expensive.

Furthermore, Ostrovsky and Yung assume that the

network is synchronous, and that secure channels are

uncompromised by past corruptions of the endpoints.

Practical implementations of secure channels involve

secret keys that would be exposed by a compromise

of the endpoints, and hence it is unclear how to

recover the node in that case, since the adversary now

knows the node's secret keys. Also, although they

show that "recovery" of a machine's state is possible

in theory by having all of the other participants

construct it via a secure multi-party computation, it is

unclear how one might perform recovery efficiently

in practice.

4.2. Herzberg et al

Herzberg et al. [HJKY95] address the efficiency

problem by introducing a protocol specialized to the

problem of generating a new secret sharing. In their

scheme, participants numbered i = 1 . . . n have an

initial Shamir sharing with polynomial P (i.e., secret

s = P (0) with shares P (1) . . . P (n)), and in the

refresh protocol they construct a new sharing P + Q,

where Q is a random polynomial with Q(0) = 0. To

handle the case where a previously-corrupted node k

has lost its old share and needs to recover its correct

state, other participants execute a recovery protocol

in which each other party i sends P (i) + Rk(i) to k,

IJRREST: International Journal of Research Review in Engineering Science and Technology (ISSN 2278- 6643) | Volume-1 Issue-2, September 2012

69 | P a g e

where Rk is a random polynomial with Rk(k) = 0.

Note that in an asynchronous network, recovery

may additionally be needed for nodes that have

never been faulty, simply because they never

received their share from a previous execution of the

protocol.

Herzberg et al.'s scheme is difficult to translate into

an asynchronous network protocol partly because it

has an accusation/defense phase in which the

network is assumed to be reliable. Each server sends

a message to each other server, and if any senders

misbehave, the recipients broadcast accusations

against them. Then the accused servers must

broadcast a defense, or else they will be deemed

faulty by the other servers. However, in an

asynchronous network, we do not know how long it

will take for us to receive defenses from honest

servers, and if we establish a specific timeout, we

may spuriously deem honest servers to be faulty if

their responses are delayed. The authors claim in a

footnote that for certain encryption schemes such as

RSA, the defense step can be eliminated, which

might simplify the translation. How- ever, we show

that the encryption scheme must also be forward-

secure. Furthermore, fixing the problem in an

asynchronous network requires a property of the

encryption primitive that is stronger than chosen

cipher text security, and neither RSA nor RSA under

the Fujisaki-Okamoto transformation [FO99] satisfy

this property. (More specifically, in addition to

revealing the plaintext, the decryption oracle

discloses all randomness used in the encryption

computation.)

4.3 Cachin et al.'s Asynchronous Scheme

The protocol of Cachin, Kursawe, Lysyanskaya, and

Strobl [CKLS02] is the first efficient scheme in the

asynchronous model, also for t<n/3. Whereas

the Herzberg et al. scheme [HJKY95] computes

each new share P′(i) as a function of a

corresponding old share P (i), the Cachin scheme is

based on resharing the shares of the secret and

combining the resulting sub shares to form new

shares of the secret. Their paper first presents a

protocol for asynchronous verifiable secret sharing,

then shows how to build an asynchronous proactive

secret sharing scheme by having each honest

shareholder create a VSS of its share. Their VSS

scheme is similar to the one of Stinson and Wei

[SW99], and the method of computing new shares

from sub shares is based on the linearity of Lagrange

interpolation, which was proposed by Desmedt and

Jajodia in [DJ97]; however, the authors seem to be

unaware of either of these earlier works.

To handle share recovery for participants who have

lost or never received their shares, Cachin et al. use a

two-dimensional sharing P (,) in which shares are

one- dimensional projections P (i, y) and P (x, i);

thus, any participant can interpolate its share given

the points of overlap with at least t + 1 other shares.

Cachin et al.'s protocol requires that a significant

amount of information be broadcast by each par-

ticipant to each other participant even in the absence

of faults, whereas our scheme achieves better

efficiency in the common case by using a

coordinator. Moreover, their protocol does not

support changing the set of shareholders.

5. MOBILE PROACTIVE SECRET

SHARING

5.1 The Desmedt and Jajodia Scheme

Desmedt and Jajodia [DJ97] were the first to propose

an extension of proactive secret sharing, which they

call secret redistribution and we call mobile

proactive secret sharing that allows the set of

shareholders, number of shareholders, and threshold

to change. They use the same strategy as Cachin et

al. [CKLS02] (albeit in more generic group-theoretic

terms), in which each "old" shareholder acts as a

dealer and shares its share of the secret to the new

shareholders. The new shareholders then combine

the sub shares from some set of at least t + 1 old

shareholders to produce new shares of the secret.

However, their scheme is not verifiable, and thus

faulty nodes in the old group that behave incorrectly

can cause the new shareholders to generate an

invalid sharing of the secret. Furthermore, their

scheme is not formulated in terms of a concrete

network protocol, so it is unclear, for instance, how

the new shareholders are to decide which old

shareholders to accept shares from if there are faulty

old shareholders and lost network messages. A direct

implementation of their proposal would only work in

a synchronous network with a passive adversary that

can eavesdrop and corrupt nodes, but not generate

spurious messages.

5.2 Wong, Wang, and Wing Scheme

Wong, Wang, and Wing [WWW02] improve upon

Desmedt and Jajodia [DJ97] in two significant ways.

First, they provide a complete, implementable,

network protocol. Second, their scheme is verifiable,

IJRREST: International Journal of Research Review in Engineering Science and Technology (ISSN 2278- 6643) | Volume-1 Issue-2, September 2012

70 | P a g e

so cheating "old" shareholders can't compromise the

validity of the sharing or prevent it from

completing. However, their scheme relies upon all of

the new shareholders being honest for the duration of

the protocol, which is an unrealistic assumption.

Furthermore, their scheme is inefficient in the

presence of malicious old shareholders because it

gives the new shareholders no way to determine

which old shareholders sent bad information. Hence,

they must restart their protocol potentially an

exponential number of times using different subsets

of old shareholders, until a set of entirely honest

shareholders is chosen.

5.3 APSS

Zhou et al. [ZSvR05] proposed the first technique

that works in an asynchronous model, which they

call APSS. Here the threshold is modified from t

<n/2 to t <n/3, which is optimal for protocols

relying upon asynchronous Byzantine agreement

[CL02].

Their construction is based on an exclusive-or

sharing scheme rather than on Shamir's secret

sharing. The exclusive-or scheme is simpler and

more limited because it only supports k-out-of-k

sharings, i.e., all the shares are required to

reconstruct. In the exclusive-or scheme, given a

secret s, generate random values r1, r2, . . . , rt1 and

output shares r1, r2 , ..., rt1, r1 r2

rt1 s, where denotes bitwise exclusive or.

Any combination of k 1 of these shares is

indistinguishable from random values, but the

exclusive-or of all of the shares is s. For every

possible subset of honest shareholders of size t + 1,

they produce a trivial t + 1-out-of-t + 1 sharing of the

secret using the exclusive-or sharing; hence, any t+1
shareholders can reconstruct the secret. However,

this construction results in exponentially large shares

of the secret; hence, the communication required to

refresh those shares is exponential in n, the number

of shareholders. Chen [Che04] implemented and

analyzed their scheme and found the communication

overhead (total data exchanged for all servers) to be

47 kB for t = 1, 3.4 MB for t = 2, 220 MB for t = 3,

and unacceptable for larger thresholds, at least in

her implementation. Unfortunately, it seems that in

order to ensure that the probability that the threshold

is exceeded is reasonably small in a real-world

system, using realistic assumptions about failure

rates, the value of t must be 6 or greater [Rod].

Hence, to be practical, it seems the protocol must

have sub exponential complexity, regardless of

optimizations we might be able to apply to this

exponential scheme. Our protocol requires O(n4)

bytes of network traffic with reasonable constant

factors.

5.4 MPSS — Our Scheme

Our approach uses a simple Feldman VSS, and the

technique for generating new shares is based on the

one of Herzberg et al [HJKY95]. However, our

protocol assumes a much weaker (asynchronous)

network and allows the group to change. When the

group changes, it is able to handle a threshold of up

to t Byzantine shareholders in the old group and an

additional threshold of t Byzantine servers in the

new group. Furthermore, unlike the scheme of

[WWW02], we achieve worst-case polynomial

communication complexity, and moreover our

protocol has low overhead in the optimistic case

where there are no failures.

Our protocol makes use of accusations as part of

choosing the new shares, as does Herzberg et al.

However Herzberg et al. make use of an

accusations/defense phase, which require extra

interaction that is undesirable in the asynchronous

setting. In particular, when servers receive invalid

messages, they must accuse the sender, and if the

sender is honest it must broad- cast a defense to

prove that the accusation is specious. But if message

delays can be arbitrary, it is impossible to ensure

that all accusations and all defenses from honest

parties have been received, and hence we cannot tell

which servers are misbehaving. Our protocol does

not require accusations, but as an optimization, this

thesis presents an optional extension called

verifiable accusations. Unlike Herzberg et al.'s

accusations, verifiable accusations require no defense

phase, as any party can determine the validity of the

accusation.

6. CLOUD COMPUTING

Cloud computing is the delivery of computing and

storage capacity as a service to a heterogeneous

community of end-recipients. The name comes from

the use of a cloud-shaped symbol as an abstraction

for the complex infrastructure it contains in system

diagrams. Cloud computing entrusts services with a

user's data, software and computation over a network.

IJRREST: International Journal of Research Review in Engineering Science and Technology (ISSN 2278- 6643) | Volume-1 Issue-2, September 2012

71 | P a g e

7. SECURITY ISSUES IN CLOUD

COMPUTING

As cloud computing is achieving increased

popularity, concerns are being voiced about the

security issues introduced through adoption of this

new model. The effectiveness and efficiency of

traditional protection mechanisms are being

reconsidered as the characteristics of this innovative

deployment model can differ widely from those of

traditional architectures. An alternative perspective

on the topic of cloud security is that this is but

another, although quite broad, case of "applied

security" and that similar security principles that

apply in shared multi-user mainframe security

models apply with cloud security.

The relative security of cloud computing services is a

contentious issue that may be delaying its adoption.

Physical control of the Private Cloud equipment is

more secure than having the equipment off site and

under someone else’s control. Physical control and

the ability to visually inspect the data links and

access ports is required in order to ensure data links

are not compromised. Issues barring the adoption of

cloud computing are due in large part to the private

and public sectors' unease surrounding the external

management of security-based services. It is the very

nature of cloud computing-based services, private or

public, that promote external management of

provided services.

This delivers great incentive to cloud computing

service providers to prioritize building and

maintaining strong management of secure services.

Security issues have been categorized into sensitive

data access, data segregation, privacy, bug

exploitation, recovery, accountability, malicious

insiders, management console security, account

control, and multi-tenancy issues. Solutions to

various cloud security issues vary, from

cryptography, particularly public key infrastructure

(PKI), to use of multiple cloud providers,

standardization of APIs, and improving virtual

machine support and legal support.

Cloud computing offers many benefits, but it also is

vulnerable to threats. As the uses of cloud computing

increase, it is highly likely that more criminals will

try to find new ways to exploit vulnerabilities in the

system. There are many underlying challenges and

risks in cloud computing that increase the threat of

data being compromised. To help mitigate the threat,

cloud computing stakeholders should invest heavily

in risk assessment to ensure that the system encrypts

to protect data; establishes trusted foundation to

secure the platform and infrastructure; and builds

higher assurance into auditing to strengthen

compliance. Security concerns must be addressed in

order to establish trust in cloud computing

technology.

8. MPSS IN CLOUD COMPUTING TO

AVOID SECURITY ISSUES

Mobile proactive secret sharing scheme can be used

in cloud network to secure data and other secret

values. As in cloud computing, many independent

computing systems are connected together for a

particular job, then the important information of this

job can be subdivided into thresholds for individual

computing systems. These computing system then

store these thresholds.

If an attacker tries to access that information in any

individual system, finally he can get only some

encrypted or coded part of that information. In cloud

computing network system, it is not easy to enter or

unauthorized access of every system because every

system may have different functionalities like

operating system, firewall system, software etc.

In comparison to other computing system networks,

where operating systems are almost same on all

systems, MPSS scheme work better in cloud network.

9. CONCLUSION AND FUTURE WORK

By this research paper, we found that security in

cloud computing is a big issue. Taking the benefits of

the different functionalities of cloud computing

systems in a cloud network where they have different

operating systems and different other system

software and application software, we can apply

mobile proactive secret sharing scheme to avoid

security attacks. When important information is

distributed among systems of cloud network and

stored in some encrypted form, it is not easy for a

attacker to access all systems of the network to get

the information.

This research paper may lead to overcome the

security issues of a cloud computing network. As

systems of cloud computing having different

operating systems and different security related

settings are connected together on some job, MPSS

will be very useful in avoiding the security attacks.

IJRREST: International Journal of Research Review in Engineering Science and Technology (ISSN 2278- 6643) | Volume-1 Issue-2, September 2012

72 | P a g e

REFERENCES

[1]D. Boneh, X. Boyen, and S. Halevi. Chosen

ciphertext secure public key threshold encryption

without random oracles. In RSA Conference, pages

226-243, 2006.

[2]D. Boneh and M. Franklin. Identity-based

encryption from the weil pairing. In Joe Kilian,

editor, Advances in Cryptology—CRYPTO 2001,

Lecture Notes in Computer Science, pages 213-229.

Springer-Verlag, 19- 23 August 2001.

[3]Michael Ben-Or, Shafi Goldwasser, and Avi

Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation

(extended abstract). In Proceedings of the

Twentieth Annual ACM Sym- posium on Theory of

Computing, pages 1-10, Chicago, Illinois, May 1988.

[4]G.R. Blakley. Safeguarding cryptographic keys.

In Proc. AFIPS 1979, volume 48, pages 313-317,

June 1979.

[5]D. Bleichenbacher. Chosen ciphertext attacks

against protocols based on RSA encryption standard

PKCS #1. pages 1-12, 1998.

[6]Mihir Bellare and Sara Miner. A forward-secure

digital signature scheme. In Michael Wiener, editor,

Advances in Cryptology—CRYPTO '99, volume

1666 of Lecture Notes in Computer Science, pages

431-448. Springer-Verlag, 15-19 August 1999.

Revised version is available from http://www.cs.ucsd.edu/

mihir/.

[7]Ran Canetti and Shafi Goldwasser. An efcient

threshold public key cryptosystem secure against

adaptive chosen ciphertext attack. In Theory and

Application of Cryptographic Techniques, pages

90-106, 1999.

[8]Kathryn Chen. Authentication in a reconfigurable

byzantine fault tol- erant system. In MEng Thesis,

Massachusetts Institute of Technology, 2004.

[9]R. Canetti, S. Halevi, and J. Katz. A forward-

secure public-key en- cryption scheme. In Eli

Biham, editor, Advances in Cryptology—

EUROCRYPT 2003, volume 2656 of Lecture Notes

in Computer Science, pages 255-271. Springer-

Verlag, 4 - 8 May 2003.

[10]M. Castro and B. Liskov. A Correctness Proof

for a Practical Byzantine- Fault-Tolerant Replication

Algorithm. Technical Memo MIT/LCS/TM- 590,

MIT Laboratory for Computer Science, 1999.

[11]Miguel Castro and Barbara Liskov. Practical

Byzantine Fault Toler- ance and Proactive

Recovery. ACM Transactions on Computer

Systems, 20(4):398-461, November 2002.

[12]Don Coppersmith, editor. Advances in

Cryptology—CRYPTO '95, vol- ume 963 of Lecture

Notes in Computer Science. Springer-Verlag, 27-

31 August 1995.

[13]R. Ostrovsky and M. Yung. How to withstand

mobile virus attacks. In Proceedings of the 10th

(ACM) Symposium on the Principles of Dis-

tributed Computing, pages 51-61, 1991.

[14]Torben Pryds Pedersen. Non-interactive and

information-theoretic se- cure verifiable secret

sharing. In J. Feigenbaum, editor, Advances in

Cryptology—CRYPTO '91, volume 576 of Lecture

Notes in Computer Science, pages 129-140.

Springer-Verlag, 1992, 11-15 August 1991.

[15]Torben Pryds Pedersen. A threshold

cryptosystem without a trusted party (extended

abstract). In D. W. Davies, editor, Advances in

Cryptology—EUROCRYPT 91, volume 547 of

Lecture Notes in Computer Science, pages 522-526.

Springer-Verlag, 8-11 April 1991.

[16]S. Pohlig and M. Hellman. An improved

algorithm for computing log- arithms over GF(p).

IEEE Transactions on Information Theory, IT-

24:106-110, 1978.

[17]T. Rabin and M. Ben-Or. Verifiable secret

sharing and multiparty pro- tocols with honest

majority. In STOC '89: Proceedings of the twenty-

first annual ACM symposium on Theory of

computing, pages 73-85, New York, NY, USA,

1989. ACM Press.

[18]Rodrigo Rodrigues et al. Automatic

reconfiguration for large-scale dis- tributed storage

systems. Unpublished.

[19]David Andrew Schultz, Mobile Proactive Secret

Sharing, Massachuates Institute of Technology,

USA, 2007

